Scala algorithm: Tic Tac Toe board check
Published
Algorithm goal
In Tic Tac Toe (also known as Naughts and Crosses), players place an X or an O onto a 3x3 grid. The winner is the player who gets three of their own in a row/column/diagonal.
Here, we verify that a Tic Tac Toe board has a winner; and whether a move is valid. To see how we could play Tic-Tac-Toe, see TicTacToeSolveMinMax.
Test cases in Scala
assert(sampleMoveSequence(0).winner.isEmpty, "Started game has no winner")
assert(sampleMoveSequence(1).winner.isEmpty, "One move has no winner")
assert(sampleMoveSequence(2).winner.isEmpty, "Two moves have no winner")
assert(sampleMoveSequence(3).winner.isEmpty, "Three moves have no winner")
assert(sampleMoveSequence(4).winner.isEmpty, "Four moves have no winner")
assert(
sampleMoveSequence(5).winner.contains(TicTacToeBoard.PlayerId.X),
"Game is won by 'x' after 5 moves"
)
assert(
sampleMoveSequence2.flatMap(_.winner) == List(TicTacToeBoard.PlayerId.O),
"Game is won by 'o' after 6 moves"
)
assert(
!sampleMoveSequence(1).isValidMove(0 -> 0),
"If a spot is taken, the move is invalid"
)
assert(TicTacToeBoard.invertPos(7) == (2 -> 1))
Algorithm in Scala
56 lines of Scala (compatible versions 2.13 & 3.0).
Explanation
The first challenge in solving these two functions is how to represent the board. In this case, the algorithm solution was implemented a TDD approach to allow for the most testable representation of the board.
There are other was of representing the board, such as Vector of Vector, or even a Map, but in this one, it is represented by a Vector, with mappings between Vector indices the the position on the board. (this is © from www.scala-algorithms.com)
A more Scala way of representing whether a position is filled is using an Option of an enumeration (O | X), rather than a Boolean or some other type.
Scala concepts & Hints
For-comprehension
The for-comprehension is highly important syntatic enhancement in functional programming languages.
Option Type
The 'Option' type is used to describe a computation that either has a result or does not. In Scala, you can 'chain' Option processing, combine with lists and other data structures. For example, you can also turn a pattern-match into a function that return an Option, and vice-versa!
Pattern Matching
Pattern matching in Scala lets you quickly identify what you are looking for in a data, and also extract it.
scanLeft and scanRight
Scala's `scan` functions enable you to do folds like foldLeft and foldRight, while collecting the intermediate results
Stack Safety
Stack safety is present where a function cannot crash due to overflowing the limit of number of recursive calls.
This function will work for n = 5, but will not work for n = 2000 (crash with java.lang.StackOverflowError) - however there is a way to fix it :-)
In Scala Algorithms, we try to write the algorithms in a stack-safe way, where possible, so that when you use the algorithms, they will not crash on large inputs. However, stack-safe implementations are often more complex, and in some cases, overly complex, for the task at hand.
View
The
.view
syntax creates a structure that mirrors another structure, until "forced" by an eager operation like .toList, .foreach, .forall, .count.